3.46 \(\int \frac{x^3 (d+e x)^2}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=97 \[ \frac{d^2 (d+e x)^2}{5 e^4 \left (d^2-e^2 x^2\right )^{5/2}}-\frac{4 d (d+e x)}{5 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{5 d+2 e x}{5 d e^4 \sqrt{d^2-e^2 x^2}} \]

[Out]

(d^2*(d + e*x)^2)/(5*e^4*(d^2 - e^2*x^2)^(5/2)) - (4*d*(d + e*x))/(5*e^4*(d^2 - e^2*x^2)^(3/2)) + (5*d + 2*e*x
)/(5*d*e^4*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.172656, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {1635, 637} \[ \frac{d^2 (d+e x)^2}{5 e^4 \left (d^2-e^2 x^2\right )^{5/2}}-\frac{4 d (d+e x)}{5 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{5 d+2 e x}{5 d e^4 \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(d^2*(d + e*x)^2)/(5*e^4*(d^2 - e^2*x^2)^(5/2)) - (4*d*(d + e*x))/(5*e^4*(d^2 - e^2*x^2)^(3/2)) + (5*d + 2*e*x
)/(5*d*e^4*Sqrt[d^2 - e^2*x^2])

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rule 637

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(a*e) + c*d*x)/(a*c*Sqrt[a + c*x^2]),
 x] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^3 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac{d^2 (d+e x)^2}{5 e^4 \left (d^2-e^2 x^2\right )^{5/2}}-\frac{\int \frac{(d+e x) \left (\frac{2 d^3}{e^3}+\frac{5 d^2 x}{e^2}+\frac{5 d x^2}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d}\\ &=\frac{d^2 (d+e x)^2}{5 e^4 \left (d^2-e^2 x^2\right )^{5/2}}-\frac{4 d (d+e x)}{5 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{\int \frac{\frac{6 d^3}{e^3}+\frac{15 d^2 x}{e^2}}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2}\\ &=\frac{d^2 (d+e x)^2}{5 e^4 \left (d^2-e^2 x^2\right )^{5/2}}-\frac{4 d (d+e x)}{5 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac{5 d+2 e x}{5 d e^4 \sqrt{d^2-e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0637293, size = 63, normalized size = 0.65 \[ \frac{-4 d^2 e x+2 d^3+d e^2 x^2+2 e^3 x^3}{5 d e^4 (d-e x)^2 \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(2*d^3 - 4*d^2*e*x + d*e^2*x^2 + 2*e^3*x^3)/(5*d*e^4*(d - e*x)^2*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 65, normalized size = 0.7 \begin{align*}{\frac{ \left ( -ex+d \right ) \left ( ex+d \right ) ^{3} \left ( 2\,{e}^{3}{x}^{3}+d{e}^{2}{x}^{2}-4\,{d}^{2}ex+2\,{d}^{3} \right ) }{5\,d{e}^{4}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x)

[Out]

1/5*(-e*x+d)*(e*x+d)^3*(2*e^3*x^3+d*e^2*x^2-4*d^2*e*x+2*d^3)/d/e^4/(-e^2*x^2+d^2)^(7/2)

________________________________________________________________________________________

Maxima [A]  time = 1.01238, size = 209, normalized size = 2.15 \begin{align*} \frac{x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}}} + \frac{d x^{3}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e} - \frac{d^{2} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e^{2}} - \frac{3 \, d^{3} x}{5 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e^{3}} + \frac{2 \, d^{4}}{5 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e^{4}} + \frac{d x}{5 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{3}{2}} e^{3}} + \frac{2 \, x}{5 \, \sqrt{-e^{2} x^{2} + d^{2}} d e^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

x^4/(-e^2*x^2 + d^2)^(5/2) + d*x^3/((-e^2*x^2 + d^2)^(5/2)*e) - d^2*x^2/((-e^2*x^2 + d^2)^(5/2)*e^2) - 3/5*d^3
*x/((-e^2*x^2 + d^2)^(5/2)*e^3) + 2/5*d^4/((-e^2*x^2 + d^2)^(5/2)*e^4) + 1/5*d*x/((-e^2*x^2 + d^2)^(3/2)*e^3)
+ 2/5*x/(sqrt(-e^2*x^2 + d^2)*d*e^3)

________________________________________________________________________________________

Fricas [A]  time = 1.86781, size = 230, normalized size = 2.37 \begin{align*} \frac{2 \, e^{4} x^{4} - 4 \, d e^{3} x^{3} + 4 \, d^{3} e x - 2 \, d^{4} -{\left (2 \, e^{3} x^{3} + d e^{2} x^{2} - 4 \, d^{2} e x + 2 \, d^{3}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{5 \,{\left (d e^{8} x^{4} - 2 \, d^{2} e^{7} x^{3} + 2 \, d^{4} e^{5} x - d^{5} e^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/5*(2*e^4*x^4 - 4*d*e^3*x^3 + 4*d^3*e*x - 2*d^4 - (2*e^3*x^3 + d*e^2*x^2 - 4*d^2*e*x + 2*d^3)*sqrt(-e^2*x^2 +
 d^2))/(d*e^8*x^4 - 2*d^2*e^7*x^3 + 2*d^4*e^5*x - d^5*e^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \left (d + e x\right )^{2}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x+d)**2/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(x**3*(d + e*x)**2/(-(-d + e*x)*(d + e*x))**(7/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.1506, size = 85, normalized size = 0.88 \begin{align*} -\frac{{\left (2 \, d^{4} e^{\left (-4\right )} +{\left (x^{2}{\left (\frac{2 \, x e}{d} + 5\right )} - 5 \, d^{2} e^{\left (-2\right )}\right )} x^{2}\right )} \sqrt{-x^{2} e^{2} + d^{2}}}{5 \,{\left (x^{2} e^{2} - d^{2}\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

-1/5*(2*d^4*e^(-4) + (x^2*(2*x*e/d + 5) - 5*d^2*e^(-2))*x^2)*sqrt(-x^2*e^2 + d^2)/(x^2*e^2 - d^2)^3